
Anshu Dubey and Mark Adams
Some slides provided by Ann Almgren and

Brian Van Straalen

Block Structured AMR Libraries and
Their Interoperability with Other Math

Libraries

FASTMath SciDAC Institute!

LLNL-PRES-501654!

Refined regions are organized into logically-rectangular patches.!
Refinement is performed in time as well as in space.!

Block-Structured Local Refinement (Berger and
Oliger, 1984)

1
n+

2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

•  Think of AMR as a compression technique for the discretized mesh!

•  Apply higher resolution in the domain only where it is needed!

•  When should you use AMR:!
•  When you have a multi-scale problem!
•  When a uniformly spaced grid is going to use more memory than

you have available to achieve the resolution you need!

•  You cannot always use AMR even when the above conditions are met!
•  When should you not use AMR:!

•  When the overhead costs start to exceed gains from compression!
•  When fine-coarse boundaries compromise the solution accuracy

beyond acceptability !

Why use AMR and When ?

Much as using any tool in scientific computing, you should know what are
the benefits and limits of the technologies you are planning to use

•  Machinery needed for computations :!
•  Interpolation, coarsening, flux corrections and other needed

resolutions at fine-coarse boundaries!

•  Machinery needed for house keeping :!
•  The relationships between entities at the same resolution levels!
•  The relationships between entities at different resolution levels!

•  Machinery needed for parallelization :!
•  Domain decomposition and distribution among processors !

• Sometimes conflicting goals of maintaining proximity and load
balance!

•  Redistribution of computational entities when the grid changes due
to refinement!

•  Gets more complicated when the solution method moves away
from explicit solves !

The Flip Side - Complexity

5 5

§  A self contained computational
domain

§  Apply computational stencils
§  The halo cells may come from same

level exchanges or from a coarser
level through interpolation

§  If there is no sub-cycling, the
interface is simple, all patches can
get their halos filled simultaneously

§  With sub-cycling either the
application or the infrastructure can
control what to fill when

Most structured AMR methods use the same abstraction for semi-implicit solvers
such as multigrid, in the sense they operate on a block/box at a time, the

operations in between and the orchestration gets more complicated

Abstraction for Explicit Methods

•  Locally refine patches where needed to improve the solution.!
•  Each patch is a logically rectangular structured grid.!

o  Better efficiency of data access.!
o  Can amortize overhead of irregular operations over large number

of regular operations.!
•  Refined grids are dynamically created and destroyed.!

Approach

•  Fill data at level 0 !
•  Estimate where refinement is

needed!
•  Group cells into patches

according to constraints
(refinement levels, grid
efficiency etc)!

•  Repeat for the next level!
•  Maintain proper nesting!

Building the Initial Hierarchy

How Efficiency Affects the Grid

Efficiency=0.5 Efficiency=0.7 Efficiency=0.9

•  Consider two levels, coarse and fine with refinement ratio r!

!
•  Advance !
•  Advance fine grids r times!
•  Synchronize fine and coarse data!
•  Apply recursively to all refinement levels!

Adaptive in Time

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.!
• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.!
• Build on public-domain standards: MPI.Chombo also uses HDF5!
• Interoperability with other tools: VisIt, PETSc,hypre.!
• The lowest levels are very similar – they had the same origin!
• Examples from Chombo!

The Two Packages: Boxlib and Chombo

(5,0)

(4,2)

(3,2)

(2,1)

(1,0)

(0,1)

(4,0)

(5,0)(3,2)

(0,0)

(2,0)

(1,1)

Distributed Data on Unions of Rectangles

Provides a general mechanism for distributing data defined on unions of
rectangles onto processors, and expressing communications between
processors.!
!

Metadata, of which all processors have a copy. BoxLayout is a collection of
Boxes and processor assignments: {Bk,pk}k=1,ngrids .
DisjointBoxLayout:public Boxlayout is a BoxLayout for which
the Boxes must be disjoint!

Data on Unions of boxes

Distributed data associated with a DisjointBoxLayout. Can have
ghost cells around each box to handle intra-level, inter-level, and domain
boundary conditions. Templated (LevelData) in Chombo.!

Interpolation from coarse to fine

•  Linearly interpolates data from
coarse cells to the overlaying
fine cells.!
•  Useful when initializing newly-
refined regions after regridding.!
Example:!
!ProblemDomain fineDomain;!
DisjointBoxLayout coarseGrids, fineGrids;!
int refinementRatio, nComp;!
LevelData<FArrayBox> coarseData(coarseGrids, nComp);!
LevelData<FArrayBox> fineData(fineGrids, nComp);!
!
FineInterp interpolator(fineGrids, nComp, refinementRatio,!
 fineDomain);!
!
// fineData is filled with linearly interpolated coarseData!
interpolator.interpToFine(fineData, coarseData);!
!

CoarseAverage Class
•  Averages data from finer levels
to covered regions in the next
coarser level.!
•  Used for bringing coarse levels
into sync with refined grids
covering them.!
Example:!
!DisjointBoxLayout fineGrids;!
DisjointBoxLayout crseGrids;!
int nComp, refRatio;!
!
LevelData<FArrayBox> fineData(fineGrids, nComp);!
LevelData<FArrayBox> crseData(crseGrids, nComp);!
!
CoarseAverage averager(fineGrids, crseGrids, nComp,
refRatio);!
!
averager.averageToCoarse(crseData, fineData);!
!

Coarse-Fine Interactions (AMRTools)

The operations that couple different levels of
refinement are among the most difficult to
implement, as they typically involve a combination
of interprocessor communication and irregular
computation.!

•  Interpolation between levels (FineInterp).!
• Averaging down to coarser grids
(CoarseAverage).!

•  Interpolation of boundary conditions
(PiecewiseLinearFillpatch,
QuadCFInterp, higher-order extensions).!
•  Managing conservation at refinement
boundaries (LevelFluxRegister).!

PiecewiseLinearFillPatch Class

Linear interpolation of coarse-
level data (in time and space)
into fine-level ghost cells.!
Example:!
!ProblemDomain crseDomain;!
DisjointBoxLayout crseGrids, fineGrids;!
int nComp, refRatio, nGhost;!
Real oldCrseTime, newCrseTime, fineTime;!
!
LevelData<FArrayBox> fineData(fineGrids, nComp,
nGhost*IntVect::Unit);!
LevelData<FArrayBox> oldCrseData(crseGrids, nComp);!
LevelData<FArrayBox> newCrseData(crseGrids, nComp);!
!
PiecewiseLinearFillPatch filler(fineGrids, coarseGrids, nComp,!
 crseDomain, refRatio, nGhost); !
Real alpha = (fineTime-oldCrseTime)/(newCrseTime-oldCrseTime); !
filler.fillInterp(fineData, oldCrseData, newCrseData, alpha,!
 0, 0, nComp);!
!
!
!

LevelFluxRegister Class

The coarse and fine fluxes are computed at different points in the
program, and on different processors. We rewrite the process in the
following steps.!

Example: explicit heat equation solver on a
single grid.!

c Fortran code:!
 subroutine heatsub2d(phi,nlphi0, nhphi0,nlphi1, nhphi1,!
 & nlreg, nhreg, dt, dx, nu)!
!
 real*8 phi(nlphi0:nhphi0,nlphi1:nhphi1)!
 real*8 dt,dx,nu!
 integer nlreg(2),nhreg(2)!
!
c Remaining declarations, setting of boundary conditions goes here.!
!
 do j = nlreg(2), nhreg(2)!
 do i = nlreg(1), nhreg(1)!
 lapphi = (phi(i+1,j) +phi(i,j+1) +phi(i-1,j) +phi(i,j-1)!
 & -4.0d0*phi(i,j))/(dx*dx)!
!
 phi(i,j) = phi(i,j) + nu*dt*lapphi!
 enddo!
 enddo!
!
 return!
 end!

Example: explicit heat equation solver on a
single grid.!

// C++ code:!
!
 Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);!
 FArrayBox soln(grow(domain,1), 1);!
 soln.setVal(1.0);!
!
 for (int nstep = 0;nstep < 100; nstep++)!
 {!
 heatsub2d_(soln.dataPtr(0),!
 &(soln.loVect()[0]), &(soln.hiVect()[0]),!
 &(soln.loVect()[1]), &(soln.hiVect()[1]),!
 domain.loVect(), domain.hiVect(),!
 &dt, &dx, &nu)!
 }!

ChomboFortran!

ChomboFortran is a set of macros used by Chombo for:!
•  Managing the C++ / Fortran Interface.!
•  Writing dimension-independent Fortran code.!

Advantages to ChomboFortran:!
•  Enables fast (2D) prototyping, and nearly immediate extension to 3D.!
•  Simplifies code maintenance and duplication by reducing the
replication of dimension-specific code.!

!

Previous C++/Fortran Interface!
•  C++ call site:!
!
heatsub2d_(soln.dataPtr(0),!
 &(soln.loVect()[0]), &(soln.hiVect()[0]),!
 &(soln.loVect()[1]), &(soln.hiVect()[1]),!
 domain.loVect(), domain.hiVect(),!
 &dt, &dx, &nu);!
!
•  Fortran code:!
!
 ! !subroutine heatsub2d(phi,iphilo0, iphihi0,iphilo1,
iphihi1,!
 & domboxlo, domboxhi, dt, dx, nu)!
!
 real*8 phi(iphilo0:iphihi0,iphilo1:iphihi1)!
 real*8 dt,dx,nu!
 integer domboxlo(2),domboxhi(2)!
!
Managing such an interface is error-prone and dimensionally dependent (since 3D
will have more index arguments for array sizing).!

C++ / Fortran Interface with ChomboFortran !

•  C++ call site:!
!
 FORT_HEATSUB(CHF_FRA(soln),!
 CHF_BOX(domain),!
 CHF_REAL(dt), CHF_REAL(dx), CHF_REAL(nu));!
•  Fortran code:!
!
 subroutine heatsub(CHF_FRA[phi], CHF_BOX[domain],!
 & CHF_REAL[dt], CHF_REAL[dx], CHF_REAL[nu])!
!
ChomboFortran expands the argument lists on both sides depending on the
dimensionality of the problem. On the Fortran side, it also generates the type
declarations for the arguments automatically, along with appropriate header files to
be included in the C++ code.!

Dimension-independence with ChomboFortran !
•  Looping macros: CHF_MULTIDO!
•  Array indexing: CHF_IX!
!
Replace!
 ! do j = nlreg(2), nhreg(2)!
 do i = nlreg(1), nhreg(1)!
 phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)!
 enddo!
 enddo !
!
with!
!
 CHF_MULTIDO[dombox; i;j;k]!
 phi(CHF_IX[i;j;k]) = phi(CHF_IX[i;j;k]) !
 & + nu*dt*lphi(CHF_IX[i;j;k])!
 CHF_ENDDO!
!
Prior to compilation, ChomboFortran replaces the indexing and looping macros
with code appropriate to the dimensionality of the problem. !

Elliptic Solver Example: LinearSolver virtual
base class

class LinearSolver<T>!

{!

// define solver!

virtual void define(LinearOp<T>* a_operator, bool
a_homogeneous) = 0;!

!

// Solve L(phi) = rhs !

virtual void solve(T& a_phi, const T& a_rhs) = 0;!

...!

}!

LinearOp<T> defines what it means to evaluate the operator (for example,
a Poisson Operator) and other functions associated with that operator. T can
be an FArrayBox (single grid), LevelData<FArrayBox> (single-
level), Vector<LevelData<FArrayBox>*> (AMR hierarchy).!

•  We have seen how construct AMR operator in Chombo as series of sub-operations!
•  Coarse interpolation, fine interpolation, boundary conditions, etc.!

•  Matrix-free operators!
•  Low memory: good for performance and memory complexity!
•  Can use same technology to construct matrix-free equation solvers!

•  Operator inverse!
•  Use geometric multigrid (GMG)!
•  Inherently somewhat isotropic!

•  Some applications have complex geometry and/or anisotropy!
•  GMG looses efficacy!
•  Solution: algebraic multigrid (AMG)!

•  Need explicit matrix representation of operator!
•  Somewhat complex bookkeeping task but pretty mechanical!
•  Recently developed infrastructure in Chombo support matrix construction!
•  Apply series of transformations to matrix or stencil!

•  Similar to operator but operating matrix/stencil instead of field data!
•  Stencil: list of <Real weight, <cell, level>>!

•  Stencil + map <cell, level> to global equation number: row of matrix!
•  Start with A0 : initial operator matrix !

•  Eg, 1D 3-point stencil: {<-1.0, <i-1,lev>, <2.0, <i,lev>, <-1.0, <i+1,lev>}!

Matrix representation of operators

PETSc Composite Grid Solvers: PetscCompGrid

class LinearSolver<T>!

{!

virtual void createOpStencil(IntVect,int,const
DataIndex&,StencilTensor &) = 0;!

PetscErrorCode createMatrix(int a_makePmat=0);!

Mat getMatrix() const { return m_mat;!

}!

class PetscCompGridPois : public PetscCompGrid!

{!

void createOpStencil(IntVect,int,const
DataIndex&,StencilTensor &);!

}!

PETSc Composite Grid Example:
PetscCompGridPois

void !

PetscCompGridPois::createOpStencil(IntVect a_iv, int a_ilev,const
DataIndex &a_di_dummy, StencilTensor &a_sten)!

{!

 Real dx=m_dxs[a_ilev][0],idx2=1./(dx*dx);!

 StencilTensorValue &v0 = a_sten[IndexML(a_iv,a_ilev)]; !

 v0.define(1);!

 v0.setValue(0,0,m_alpha - m_beta*2.*SpaceDim*idx2);!

 for (int dir=0; dir<CH_SPACEDIM; ++dir) {!

 for (SideIterator sit; sit.ok(); ++sit) {!

 int isign = sign(sit());!

 IntVect jiv(a_iv); jiv.shift(dir,isign);!

 StencilTensorValue &v1 = a_sten[IndexML(jiv,a_ilev)];!

 v1.define(1);!

 v1.setValue(0,0,m_beta*idx2);!

}}}!

PETSc AMR Solver Example:
 releasedExamples/AMRPoisson/execPETSc

Solve(Vector<DisjointBoxLayout> grids, Vector<LevelData<FArrayBox> *> phi, Vector<LevelData<FArrayBox> *> rhs)!

{ !

 PetscCompGridPois petscop(0.,-1.,s_order);!

 RefCountedPtr<ConstDiriBC> bcfunc = !

! !RefCountedPtr<ConstDiriBC>(new !

! !ConstDiriBC(1,petscop.getGhostVect()));!

 BCHolder bc(bcfunc);!

 petscop.define(cdomains, grids, refratios, bc, cdx*RealVect::Unit);!

 ierr = petscop.createMatrix(); CHKERRQ(ierr);!

 Mat A = petscop.getMatrix();!

 ierr = MatGetVecs(A,&x,&b); CHKERRQ(ierr);!

 ierr = petscop.putChomboInPetsc(rhs,b); CHKERRQ(ierr);!

 ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);!

 ierr = KSPSetOperators(ksp, A, A); CHKERRQ(ierr);!

 ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);!

 ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);!

 ierr = KSPDestroy(&ksp); CHKERRQ(ierr);!

 ierr = a_petscop.putPetscInChombo(x, phi); CHKERRQ(ierr);!

}!

•  We can think of these transformations as matrix or operators operating
on one global matrix (not a good way to implement)!
•  Range and domain space of these operators is critical!

•  Start with A0 : initial operator matrix !

•  B: Boundary conditions for ghost cells off of domain!
•  Need one op. for each direction (for corner points)!

•  C: Interpolate ghost cells on domain (supported by coarse cells)!
•  F: interpolate cells covered with fine cells!

•  F removes covered cells from range and domain:
Needs two operators F2 & F1

left and right application

Result: A := F2 � A0

 � B �C � F1

Approach as matrix transformations

•  Start with raw op stencil A0, 5-point stencil

•  4 types of cells:
•  Valid (V)

•  Real degree of freedom cell in matrix
•  Boundary (B)

•  Ghost cell off of domain - BC
•  Coarse (C)

•  Ghost cell in domain
•  Fine (F)

•  Coarse cell covered by fine

• “raw” operator stencil A0 composed of all 4 types
•  Transform stencil to have only valid cells

•  B, C & F operator have
•  domain space with all types (ie, B, C, F)
•  range space w/o its corresponding cell type

•  That is, each operator filters its type
•  Thus after applying B, C & F only valid cells
remain
•  Note, F removes F cells from range and
domain:

• Needs two operators F2 & F1

• left and right application

Approach from Stencil view

A0	
 A0B	

A0BC	
 F2A0BCF1	

Cartoon of stencil for cell as it is transformed

31 31

0	
 1	

3	
 4	

2	
 11	
 12	

9	
 10	

7	
 8	

5	
 6	

Problem domain – global cell IDs

12	
 13	
 14	
 15	

8	
 9	
 10	
 11	

4	
 5	
 6	
 7	

0	
 1	
 2	
 3	

Extended patch <level=1, patch=0>

Level 0

Level 2

Example: Laplacian with 3 AMR levels
(dx = 61/2 on level 1)

(Invalid nesting region!!!)

local cell
IDs

(implicit
ordering from
box iterators)

11	
 12	

9	
 10	

level 2 to global IDs (GIDs) for <1,0>

*	
 *	
 *	

3	
 4	
 7	

2	
 5	

Level 1 GIDs for <1,0>

0	
 1	

Level 0 GIDs for <1,0>

32 32

-­‐1	
 -­‐4	
 -­‐1	
 -­‐4	
 20	
 -­‐4	
 -­‐1	
 -­‐4	
 -­‐1	

-­‐1	
 -­‐4	
 -­‐1	
 -­‐4	
 20	
 -­‐4	
 -­‐1	
 -­‐4	
 -­‐1	

-­‐1	
 -­‐4	
 -­‐1	
 -­‐4	
 20	
 -­‐4	
 -­‐1	
 -­‐4	
 -­‐1	

-­‐1	
 -­‐4	
 -­‐1	
 -­‐4	
 20	
 -­‐4	
 -­‐1	
 -­‐4	
 -­‐1	

5	

6	

9	

10	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 Initial FABMatrix A0

Local IDs on level 1.!
Simplify notation:!

eg, 5 == <5,1>!

I	
 3x3	

I	
 3x3	

	
 I	
 3x3	

*	

*	

*	

5	
 6	
 7	
 9	
 10	
 11	
 13	
 14	
 15	

FABMatrix B
* = -1 for Dirichlet

* = 1 for Neumann.
Use higher order

in practice.
Split operator into

SpaceDim parts
 (x & y here).

*	

I	
 3x3	

*	

*	

*	

I	
 3x3	

*	

I	
 3x3	

	

*	

I	
 3x3	

	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

5	
 6	
 7	
 9	
 10	
 11	
 13	
 14	
 15	
 1	
 2	
 3	

5	

6	

7	

9	

10	

11	

13	

14	

15	

1	

2	

3	

Bx By

Polytropic Gas Example

•  Demonstrates integration of conservative laws (e.g., the Euler equations of gas dynamics) on
an AMR grid hierarchy.!

•  Uses unsplit, second-order Godunov method.!
•  One of the released examples in Chombo distribution!
•  Look under $CHOBO_HOME/releasedExamples/AMRGodonov/execPolytropic!
•  Source code:!

•  AMRLevel specialized for this set of problems in ../srcPolytropic!
•  Main in ./amrGodunov.cpp!
•  The executable name includes options used in the build!

amrGodunov2d.Linux.64.g++.gfortran.OPTHIGH.ex!
•  Compiled using g++ and gfortran!
•  High optimization!
•  For Linux!
•  No MPI!

•  We use ramp.inputs to provide runtime parameters!

Parameters

Length of the run!
•  godunov.max_step = 200!
•  godunov.max_time = 0.064!

Shape of the patch!
•  # godunov.num_cells = 32 8 4!
•  godunov.num_cells = 64 16 8!

Grid refinement parameters!
•  godunov.max_level = 2!
For 2D!
•  godunov.ref_ratio = 4 4 4 4 4!
For 3D!
•  # godunov.ref_ratio = 2 2 2 2 2!

Regridding parameters!
•  godunov.regrid_interval = 2 2 2 2 2 2!
•  godunov.tag_buffer_size = 3!
•  godunov.refine_thresh = 0.015!

Grid generation parameters!
•  godunov.block_factor = 4!
•  godunov.max_grid_size = 32!
•  godunov.fill_ratio = 0.75!

Experimenting with Parameters
Default Change ref_ratio to 2

Variations in
output with
change in
refinement
parameters

